Fish Ramps in the Inter-Mountain West and Great Plains

National Fish Passage Program

William Rice, PE
Fish Passage Engineer
U.S. Fish and Wildlife Service

How Many Dams Are There?

State Summary of National Inventory of Dams+

"Whiskey is for drinking, water is for fighting over" – Mark Twain

55% of NID Dams are west of the Mississippi

Water Supply and Irrigation Diversions

Water Supply and Irrigation Diversions

Wood and Metal Private Irrigation Dam Big Hole Valley, Montana Photo by: Matt Blank

From: Preliminary Engineering Report, Allendale Canal Intake and Fish Screen, Montana

- Typically <3 meters in height
- Many are undocumented

Fish Ramps in This Region

Concrete Grouted

Un-Grouted

Roughened Riffle Ramp

Riffle-Ramp with Steps

Step-Pool Ramp

Grouted Nature-Like Ramps

Big Creek, Wyoming. Photo courtesy of Wyoming Game and Fish

Harland Dam Fish Passage, Colorado

Un-Grouted Nature-Like Ramps

Step-Pool Ramp, Minnesota

Step-Pool Ramp, Kansas

Riffle Ramp. Granby, Colorado

Fisheries and Aquatic Conservation

RECLAMATION Managing Water in the West

Rock Ramp Design Guidelines

Technical Supplement 14N Fish Passage and Screening Design

U.S. Department of the Interior Bureau of Reclamation Technical Service Center

Design

Reconnecting Rivers:
Natural Channel Design in Dam
Removal and Fish Passage

Minnesota Department of Natural Resources

First Edition

Federal Interagency
Nature-like Fishway Passage Design Guidelines for
Atlantic Coast Diadromous Fishes

May 2016

Biology

Fisheries and Aquatic Conservation

Biology

Smallest Need low water velocity and turbulence

Largest Need depth and space

Biomass Need space

Example of Some Fish Across the Region and Performance

Design Criteria for Fish Passage Structures Colorado			
	Velocity	Minimum	Vertical
Species Assemblage	(ft/s)	Depth (ft)	Drop (ft)
Native minnows and darters	1-2	0.50	0.00
Native dace and suckers	2-3	0.50	0.00
Trout	3-6	0.5-1.0	0.5-1.0

Colorado Parks and Wildlife, 2015.

m/s	meter	meter
0.3-0.6	0.1	0.0
0.6-0.9	0.1	0.0
0.9-1.8	0.1-0.3	0.1-0.3

Hydrology

Design Flows

- 25, 50, 100-Year Events
- Low Flow

High and Low Fish Passage Flows Options:

- 5% and 95% Annual Flow Duration Curve
- Seasonal
- Other

Modeling

Modelling:

- 1D Most times is just fine
- 2D More important for braided, sinuous channels, outside bends, complicated hydraulics
- 3D Used on more large-scale, expensive or research-oriented applications

Manning's n

Manning's n (i.e., channel roughness): velocities goes down, but turbulence goes up as Manning's n

Be conservative – pick a value we see in rivers.

River channels generally in the 0.025 to 0.045 range ...

Watch modeling vs reality.....

Manning's n higher than 0.04 *might* be problematic for fish if slope is in the > 1% range – be sure the run turbulence calculations

Nature-Like Fishway Design

Roughened Channel Rock Ramp

- Hydraulic control (and velocities)
 influenced by channel roughness or
 friction: <u>Manning's n</u>
- USFWS recommends that roughened channels are designed at slopes equal or <u>less than 3%</u>
- Resilient design that is not as susceptible to significant impact by unexpected high flows and/or material shifting

Step-Pool Rock Ramp

- Hydraulic control (and velocities)
 influenced by a transition from sub to
 supercritical flow over the weir: <u>Weir Flow</u>
 Coefficient C
- Suitable fish passage conditions can often be created in step-pools with slopes of <u>5% or less</u>.
 Note: Salmonids in steep areas (up to 15%!)
- Adequate hydraulic conditions are vulnerable to small alterations to the original design.
 Some level of monitoring and maintenance will always be necessary.

Fisheries and Aquatic Conservation

Design Procedure

- Select Initial Ramp Diameter,
 Slope, Manning's n
- Calculate Low flow Hydraulics
- <u>Iterate</u>
- Calculate High flow Hydraulics
- <u>Iterate</u>

Rock Ramp Design Guidelines, USBR, 2007.

Rock Ramp Design Guidelines, USBR, 2007.

Conduct Riprap Design

Entrance/Exit Transitions

Boulders, clusters

Biological Review

Step Pools

Add Special Features

Iterate

- Well-Graded Mixture: Maximize Density (Fuller-Thompson Eq.)
- Ensure enough fines (for Example ~10% (sand size and below))

(2002/2006)

Fish Ramps in This Region

Concrete Grouted

Un-Grouted

Roughened Riffle Ramp

Riffle-Ramp with Steps

Step-Pool Ramp

Roughened Channel "Roughened Riffle Ramp"

Little Medicine Bow River Grade Control Fish Ramps, Wyoming

Courtesy of:
Wyoming Game
and Fish

Photo 5. Post-construction Grade Control 1, Station 92+50 at the CR-2E Bridge - Looking SE across the Grade Control 1 area. Captured November 5, 2020.

Roughened Channel "Roughened Riffle Ramp"

Little Medicine Bow River Grade Control Fish Ramps, Wyoming

Courtesy of:
Wyoming Game
and Fish

Photo 6. Post-construction Grade Control 1, Station 92+50 at the CR-2E Bridge – Looking N across the Grade Control 1 area toward the CR-2E Bridge. Captured September 25, 2020.

Guidelines for placing habitat boulders or clusters?

- Not much for rocky ramp design Needs Study!
- What are some thoughts.....
 - Look towards natural alluvial rivers of similar slope, geomorphic setting
 - Various rules of thumb from river restoration literature*
 - Boulders should occupy <10% of flow area at bankfull flow
 - Boulder clusters should not exceed 1/3 of the active channel width and not direct flow to cause excessive erosion
 - No more than 25% of low flow channel cross-sectional area blocked
 - Avoid clustering at upper end of riffle
 - Place on periphery of upstream wakes of other boulders
 - Keep at least 1-2x diameter from banks or bank armoring may be needed
 - Size of boulders based on stability at design flow

Fish Passage: Wake length for spacing

^{*}State of Oregon, 2010

^{*}Fischenich, C., and Seal, R. (1999)

^{*}Rosgen, 2002/2006

Granby Roughened Riffle Ramp

Location: Granby, Colorado USA

River: Frasier

100-Yr Discharge Event: 3,010 cfs (85 cubic m/s)

Dam Height: 7.0 ft. (2 m) River Width: 40 ft. (12 m)

Rock Ramp Slope: 3.7 %

Roughened Riffle Ramp, Granby, Colorado

Ramp Slope: 3.7%

Length: 180 feet (55 m)

Roughened Riffle Ramp, Granby, Colorado

Roughened Channel "Riffle Ramp with Steps"

Horse Creek Culvert and Ramp Project, Wyoming

Courtesy of: Wyoming Game and Fish

Riffle Ramp with Steps

*Location: United States - Nebraska

*River: Middle Loup

*100 Yr Discharge Event: 150 m3/s

*Dam Height: 7.5m

*River & Ramp Width: 35m

*Rock Ramp Slope: 20H:1V

Step Pool Rock Ramps

FLOW Plan View Sediment Sluice Gate Screw Value with screw-gate valve. Head-Gate Wing-Wall Back to River Ditch Profile View

Figure 5. Conceptual example of a cross-vane diversion structure with irrigation head gate and sediment sluice (Rosgen, 2006).

Cross-Vane Step-Pool Approach

Cross-Vane Diversion, near the Blue River in Colorado

Another Step-Pool Approach

General Step Pool Rock Ramps

General Step Pool Rock Ramps

General Step-Pool Ramp Design

Turbulence

RECOMMENDATIONS & REQUIREMENTS FT-LB/S/FT3

ENERGY DISSIPATION FACTOR (EDF)

AWS dissipation, max. (31.33 ft-lb/s/ft3); EA UK (2010) AWS dissipation, min. (20.89 ft-lb/s/ft3); EA UK (2010)

AWS POOLS (16.0 ft-lb/s/ft3) †

check weirs, salmon (10.44 ft-lb/s/ft3); Larinier et al. (1999) roughened culverts (7.0 ft-lb/s/ft3); WA DFW (2003) baffled culverts, max. (5.0 ft-lb/s/ft3); CalTrans (2013) salmonids (5.0 ft-lb/s/ft3); Maine DOT (2008) vertical slot pools (4.18 ft-lb/s/ft3); FAO and DWVK (2002)

ATLANTIC SALMON $(4.0 \text{ ft-lb/s/ft}^3)$

salmonids, adult (3.13 ft-lb/s/ft3); NOAA (2011)

AMERICAN SHAD (3.15 ft-lb/s/ft3) †

trout (3.13 ft-lb/s/ft3); EA UK (2010) non-salmonids (2.09 ft-lb/s/ft3); EA UK (2010) step-pools at turns (2.09 ft-lb/s/ft3); EA UK (2010) salmonids, juvenile (2.0 ft-lb/s/ft3); NOAA (2011) resting pools (1.04 ft-lb/s/ft3); FAO and DWVK (2002) Denil resting pools (0.52 ft-lb/s/ft3); FAO and DWVK (2002)

† U.S. Fish and Wildlife Service criteria

EDF is the volumetric power dissipation rate in ft-lb/s/ft3 ¥ is the water volume in the fishway step pool in ft3 D is the hydraulic drop from one pool to the next in ft Q is the flow over the weir crests, through the fishway, in cfs y is the unit weight of water (62.4 lbs/ft3)

- Larinier et al. (1999) "Passes a Poissons"
- · WA DFW (2003) "Design of Road Culverts for Fish Passage"
- FAO and DWVK (2002) "Fish Passes"
- EA UK (2010) "Fish Pass Manual"
- NOAA (2011) "Anadromous Salmonid Passage Facility Design"
- CalTrans (2013) "Fish Passage Design for Road Crossings"
- Maine DOT (2008) "Waterway & Wildlife Crossing Policy & Design Guide"

Energy entering the pool

Turbulence = (EDF)

Pool volume (W/m³)

USFWS Recommends:

- EDF > 1 can facilitate fine sediment movement
- Estimate 2.0-2.5 for nonsalmonids though it's very little studied.

USFWS Northeast Region (R5), FAC Fish Passage Engineering, B. Towler Issued 1/6/2017; replaces "Power Dissipation Rates" 7/26/2014

POWER DISSIPATION RATES

Free Weir vs. Nature-Like Fishway Weir

Typical Free Weir Flow

Design method more for jumpers

Typical NLF Submerged Flow

Design method more in line with non-salmonids non-jumpers

Design - Hydraulics

ROCK WEIR HYDRAULICS

REFERENCE PLATE 10-1

Constructon

PROFILE VIEW

- It's a tricky puzzle to put together!
- Footer rocks should be positioned such that sliding cannot occur
- Footer rocks create slope into pool
- Fill alternatives around steps include: Geotextile, sand/clay, mixes

Roughened Riffle Ramp Riffle-Ramp with Steps

Step-Pool Ramp

- Engineered fill
- Habitat rocks/clusters
- Most natural-looking

- Engineered fill
- Weir "Steps" of larger boulders
- No pools
- Weir rocks spaced out

- Engineered fill
- Weir "Steps" of larger boulders
- Formal step/pool morphology

Full-Scale Roughened Channel Test Facility

US Bureau of Reclamation Research

Research and Case Study Results for nonsalmonids:

- Boulder steps should be placed in an upstream pointing chevron
- Chevron angle 120-150 degrees have good success
- Typical boulder gaps are 300-400 mm, can be more
- Spacing depends on flow and drop across weir
- Center boulder largest "tuning boulder" and for large rivers 1 m – 1.25 m minimum size.

Mefford, 2009.

Rocky Ramp Analogs in Technical Fishways

USA - US Bureau of Reclamation

Chevron Dual Vertical Slot Fishway Government Highline Diversion Dam Fishway, Colorado River, CO.

Australian Designs – Cone Fishways

USA - US Bureau of Reclamation Cylinder Fishway Price-Stubb Dam, Colorado River

Colorado State University

Fort Collins, Colorado

Research

Bozeman Fish Technology Center and Montana State University

Bozeman, Montana

Fish Performance Studies, Ongoing.

Rocky Ramp Flume Experiments,
Ongoing. Dr. Chris Myrick

https://warnercnr.colostate.edu/fwcb/appliedphysiological-ecology-fishes/research/

https://www.montana.edu/ecohydraulics/

Monitoring

North American Journal of Fisheries Management

© 2020 The Authors. North American Journal of Fisheries Management published by Wiley Periodicals LLC on behalf of American Fisheries Society ISSN: 0275-5947 print / 1548-8675 online

DOI: 10.1002/nafm.10516

MANAGEMENT BRIEF

Multispecies Fish Passage Evaluation at a Rock-Ramp Fishway in a Colorado Transition Zone Stream

Eric E. Richer,* (D) Eric R. Fetherman, (D) Elizabeth A. Krone, F. Boyd Wright III, and Matt C. Kondratieff

Colorado Parks and Wildlife, 317 West Prospect Road, Fort Collins, Colorado 80526, USA

- Velocities near the bed allowed small fish passage even when velocities overall were higher than criteria though this diminished with higher and higher flows.
- Attraction and eliminating jumps greatly improved small fish passage

Close Out

- Nature-like is not natural!
 - Constructed from rock and natural materials
 - High gradient, engineered channels
 - Range from Riffle-Like to Step-Pools
- Advantages
 - Aesthetics
 - Enhances passage for multiple species
 - Upstream and downstream passage
- Disadvantages
 - Size, cost, and need for more performance studies

Hilliard Canal Step-Pool Ramp, Utah

Questions? william_rice@fws.gov

Fisheries and Aquatic Conservation