Figure 1. Structure and UV/visible spectrum of rotenone.
Table 23. Comparative adsorption and desorption of sterilized and unsterilized sediments at pH 7.

<table>
<thead>
<tr>
<th>Sediment source</th>
<th>Adsorption (μg/g)</th>
<th>Desorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unsterile</td>
<td>Sterile</td>
</tr>
<tr>
<td>Mississippi River (RM 707)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mississippi River (RM 704)</td>
<td>9.21</td>
<td>9.16</td>
</tr>
<tr>
<td>Arkansas</td>
<td>7.73</td>
<td>7.66</td>
</tr>
<tr>
<td>Chocolay River</td>
<td>8.69</td>
<td>8.75</td>
</tr>
<tr>
<td>Ford River</td>
<td>8.37</td>
<td>8.43</td>
</tr>
</tbody>
</table>
Figure 2. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Mississippi River main channel (River mile 707) at 5°C and four pH's.
Figure 3. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Mississippi River main channel (River mile 707) at 20°C and four pH's.
Figure 4. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Mississippi River backwater (River mile 704) at 5°C and four pH's.
Figure 6. Adsorption equilibria for $^{14}\text{C}$-rotenone by sediments from the Rice Branch Experiment Station, Arkansas, at 5°C and four pH's.
Figure 7. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Rice Branch Experiment Station, Arkansas at 20°C and four pH's.
Figure 8. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Chocolay River, Michigan, at 5°C and four pH's.
Figure 9. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Chocolay River, Michigan, at 20°C for four pH's.
Figure 10. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Ford River, Michigan, at 5°C and four pH's.
Figure 11. Adsorption equilibria for $^{14}$C-rotenone by sediments from the Ford River, Michigan, at 20°C and four pH's.
Figure 12. Adsorption of 1 mg/L solutions of $^{14}$C-rotenone on Mississippi River main channel (River mile 707) sediments at selected temperatures and pH's.
Figure 13. Adsorption of 1 mg/L solutions of $^{14}$C-rotenone on Mississippi River backwater (River mile 704) sediments at selected temperatures and pH's.
Figure 14. Adsorption of 1 mg/L solutions of $^{14}$C-rotenone on Rice Branch Experiment Station, Arkansas, sediments at selected temperatures and pH's.
Figure 15. Adsorption of 1 mg/L solutions of $^{14}$C-rotenone on Chocolay River, Michigan, sediments at selected temperatures and pH's.
Figure 16. Adsorption of 1 mg/L solutions of $^{14}$C-rotenone on Ford River, Michigan, sediments at selected temperatures and pH's.
Figure 17. Sorption coefficients ($K_d$) for $^{14}$C-rotenone by five different sediments at four pH's and 5°C.
Figure 18. Sorption coefficients ($k_d$) for $^{14}C$-rotenone by five different sediments at four pH's and 20°C.
Figure 19. Sorption coefficients ($K_d$) for $^{14}$C-rotenone on bottom sediments at two temperatures.
Figure 20. Desorption (%) of adsorbed 14C-rotenone from Mississippi River main channel (River mile 707) sediment at selected temperatures and pH's.
Figure 21. Desorption (%) of adsorbed $^{14}$C-rotenone from Mississippi River backwater (River mile 704) sediments at selected temperatures and pH's.
Figure 22. Desorption (%) of adsorbed 14C-rotenone from Rice Branch Experiment Station, Arkansas, sediments at selected temperatures and pH's.
Figure 23. Desorption (%) of adsorbed $^{14}$C-rotenone from Chocolay River, Michigan, sediments at selected temperatures and pH's.
Figure 24. Desorption (%) of adsorbed 14C-roteneone from Ford River, Michigan, sediments at selected temperatures and pHs.