An Analysis of the Reliability and Usefulness of the BKT Model over a 5 year period

By: Lydia Cheng

Introduction

WHO ARE WE AND WHAT DO WE DO?

- Save Our Streams Club
 - Club where high school students are lead data collections
- Collect data from various sampling sites over a 5 year period
- Analyze data by using the BKTI Model

The BKTI Model

What is the BKTI Model and how is it implemented?

- A model that evaluates the quality of a subwatershed and establishes
 a rating for comparison of watersheds
- Quality attributes shown to be the best predictors of conditions conducive for sustainable brook trout populations.
- Students enter data into the program which calculates a BKTI value
 - High BKTI = not ideal conditions, needs improvement
 - Low BKTI = ideal conditions, no further action necessary

BKTI Model in Action

		_		w_2019 rt Format			.dd-ons F	leln	Last	edit was	s on June	12 2019							
10	~ =			\$ % .0				•					⊞ 3	∃ - ≡ -	<u> </u>	÷ - 5	· co +	ih 7	- Σ -
X	S(bkt)																		
	А	В	С	D	Е	F	G	H	ł	I	J	K	L	M	N	0	Р	Q	R
1	S(bkt)	-79.02	+	4.77	(TEMP_F	L +	7.15	(DO_	FLD) +		0.56	(RIFFQUA	\ +	-0.01	(%Ag)	+	3.59	(LOG_RD)	
)	S(no_bkt)	-78.24	+	5.17	(TEMP_F	L +	6.85	(DO_	FLD) +	-	0.37	(RIFFQUA	+	-0.03	(%Ag)	+	2.48	(LOG_RD)	
	S(total)	-0.78	+	-0.40	(TEMP_F	L +	0.30	(DO_	FLD) +	-	0.19	(RIFFQUA	+	0.02	(%Ag)	+	1.11	(LOG_RD)	
ļ																			
	S(total)	-0.78	+	-0.40	(TEMP_F	L +	0.30	(DO_	FLD) +	-	0.19	(RIFFQUA	1 +	0.02	(%Ag)	+	1.11	(LOG_RD)	
7	TESTING	S		TEMP_FL0	TEMP_	INDEX	DO_FLD	DO_	INDE	X	RIFFQUAL	RQ_INI	DEX	% Ag	Ag_INE	EX	LOG_RD	RD_IND	BKTI
8	hypothet	2.92		12.70	100.0)	8.70	80.55	5555!		17.00	89.47368	4	22.00	78.43925	C	2.25	70.3125	83.8
9																			
10																			

Issues with BKTI

Reliabilty

- BKTI only accounts for sampling locations during ideal conditions
 - BKTI does not account for discrepancies in sampling locations
- No margin of error for data
 - BKTI does not have leeway for human errors in the inputted data

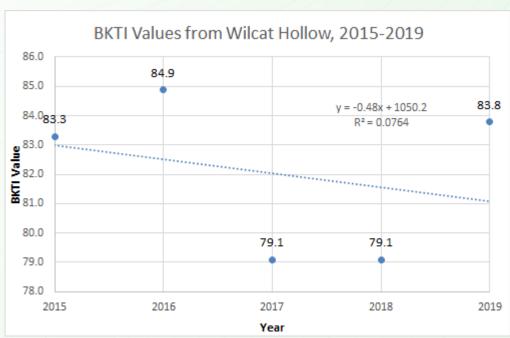
"All models are wrong. However, some are useful."

~ George E. P. Box

How we work around discrepancies

Using a baseline location

Quality Control



Collaboration

Mann-Kendall Test

BKTI Value
83.3
84.9
79.1
79.1
83.8

Reference: https://www.real-statistics.com/time-series-analysis/time-series-miscellaneous/mann-kendall-test/

Conclusion

- BKTI is...
 - A model that provides some information about collected data
 - Flawed, but still useful
 - Useful as an indicator for conditions at other sites

Acknowledgements

Thank you to my fellow club members for taking the time out of their weekends to go out into the field and collect data used in this presentation, our club sponsor, Dr. Smith, for sponsoring our club, accompanying us on data collections, and leading our club to success, and the Northern Virginia Chapter of Trout Unlimited for providing us with funding and making our program and data collections possible.